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The results of [1,2] are extended to the case of a Cosserat medium with a memory (the force stress tensor and the couple stress 
tensor depend on the histxy of deformations and rotations of a particle in the medium). In the linear approximation the defining 
relations have the form of convolutions with some relaxation kernels with respect to time. Restrictions for the kernels are obtained, 
which follow from the general principles of thermodynamics The propagation of weak perturbations is studied. The general 
functional form of the kernels corresponding to experimental data on the viscoelasticity of rock formations is given. 0 1998 Elsevier 
Science Ltd. Ail rights rcxerved. 

1. To a large extent we shall use the notation of the earlier papers [l, 21. We denote the time in an 
inertial frame of reference by t and we denote the Cartesian coordinates by x. The Latin subscripts 
correspond to the coordinates and take the values 1, 2 and 3. Unless otherwise stated summation is 
carried out over repeated indices. 

Suppose that a particle of the medium, having coordinates Xi0 at time TV, moves to a point with 
coordinates 

xii = Xi(fi*rc~Xi(J) (1.1) 

at time ti. The corresponding complete rotation of the particle is given by the matrix G(ti, to, Xis) E 
SO(3) in the selected Cartesian coordinates. It is obvious that 

Xi(~s~rotXic)=~~c, G(re,te,Xio)=l 

We recall that any element G of SO(3) can be represented as 

G = eXp(WiTi ) (1.2) 

where cq = q(G) are real numbers, and Zi are basis elements of the Lie algebra 43) such that if only 
one of the numbers cpi in (1.2) is non-zero, then the matrix g defines a rotation by Cpi about the 
corresponding axis. 

We define the velocity field and the field of angular velocities 

ui(t,xj)=a,Xi(‘,t,xj)lb=r 

n(t,xj)=a,G(t,r0,xj)14r=, Es43) 

The components of the angular velocity can be defined in terms of the field of angular velocities, 

SZi(T,xj) = Tr(riQ(r,Xj)) 

The matrices F E G&(3) with elements 

(1.3) 

can be represented as F = OD, where 0 E SO(3), D = DT > 0. It follows that the rotation and 
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deformation matrices 

o= O(r,,t,,x,,), D= D(r,,r,,x,,) 

in the fixed system of coordinates can be defined in terms of (1.3). 
The relative rotation of the particle in the time interval between to and tl is given by the matrix 

Let p = p(t, Xi) be the mass density and T = T(t, Xi) the absolute temperature of the medium. The 
following equations of continuity, momentum, angular momentum and energy are satisfied [2] 

$CEeXjPV, + Jlni)+(EgkXjPvt + Jni)V 1.1 = (&iuXkPG + fig ),j + EgkXj fk + mi + Mi (1.5) 

$(K+pU)+(K+pll)Vi,i =(Vipij),j +(Rixi),j +f;:Vi+@i-qi,i +E (l-6) 

+ViVi+~J$-@,, ~=~+v+, 
2 dr at x, 

Herepii are the components of the force stress tensor, xii are the components of the symmetric tensor 
of the moment (or couple) stresses, J are the components of the external volume forces, mi are the 
components of the momentum of the external forces, Mi are the components of the moment of internal 
forces, J is the density of the moment of inertia (having dimensions of mass x length-‘), which we shall 
assume to be constant, Kis kinetic energy density, U is the internal energy of the particle per unit mass, 
qi are the components of the energy flux vector, and E is the heat generated per unit volume. 

We shall use the Clausius-Duhem inequality [3,4] 

+r <T dt a 0, 
-00 

a=p~-T-‘&+(q,T-‘),j (1.7) 

where o is the entropy production in a particle of the medium and s is the entropy in a particle of the 
medium per unit mass. The integration in (1.7) is carried out over the states of the particle. It is assumed 
that the medium remains in the same state of rest as t + -I_=. 

To close the dynamical system we need to give specific expressions forpii, ‘cii, qi, Mi, U. 
Suppose that the state of the medium is a stress-free state of rest. We introduce the notation 

D”(r,xi)= D(-~,t,xi), R”(r,xi)=R(-~,t,xi) 

Suppose that the internal energy U of a particle of the medium depends on the parameters T, II:, R$ 
No dependence on p needs to be introduced because the first equation implies the relationship 

for the pointsxio, Xii connected by (1.1). 
From the second law of thermodynamics we have the relation 

Ids = dU - p-’ &dD’ + vidR;) (1.9) 

where cry are the components of the static stress tensor and vii are the components of the tensor 
thermodynamic force related to the microstructure of the medium. 

We emphasize that the differential equality (1.9) relates functions defined for equilibrium states of 
the medium which are infinitesimally close to one another. Therefore, only the work of elastic forces 
related to the translational and rotational degrees of freedom is considered on the right-hand side of 



Defining relations for a viscoelastic medium with microrotations 989 

this relation for the viscoelastic medium with the microstructure under consideration. Equation (1.9) 
can be given a form which takes into account the dissipative effects explicitly if the expression for dU 
from (1.6) is substituted. 

By (1.9) we have 

(1.10) 

For a purely elastic medium when there is no heat conduction, Eq. (1.9) leads to zero dissipation by 
virtue of (1.6) and (l.10). For a purely viscous incompressible medium the quantities in (1.10) vanish 
identically and the whole work of the internal forces is subject to dissipation. 

As regards the componentspii, qjcii, qi,Mi, in the spatially-local theory with heredity their values at the 
pointx, at time to are determined by the previous history of the particle, i.e. they depend on the following 
functions of tl 

(tr c f,-,, (1.1) holds) and on the derivatives of these functions with respect taxis. 
From (1.4)-(1.6), (1.9) and (1.10) we compute the rate of change of entropy 

PT.;7; ds = (Pii - og)U i,j + A,ai,j - Miai - Vii $ R~ + &~~Pj~ni + E - 4i.i (1.11) 

The viscous stress tensor with components 

consists of the symmetric part zU = zcii) and the antisymmetric part 2; = T[~I. Entropy production can 
now be computed from (1.7) and (1.11) 

Q = T-’ $ U (i,j) + TG (U [i,jl+ &gkQk) + Riini,j - Miai - Vi i Ri 
> 

+ qi( T” ),i (1.12) 

We shall seek expressions for the dissipative terms within the framework of linear non-equilibrium 
thermodynamics. Thus, we adopt the following form of (1.1) 

where the displacement vector Ui = ui(t, Xi) is small. For the rotation matrix we use the functional 
form 

where the rotation vector vi = &t, Xi) is small. Then 

The relative rotation matrix has the form 

R~(t,,fo,~~o)=6~ +E~~(cP~(fo~~jo)-~~(f~~Xjo)) 

‘pp = ‘pi + t E#uj,k 

(1.13) 

where cpy = &t, Xi) is the relative rotation vector. 
Let us introduce some new symbols 
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fi; = $ cpp, xi = -T-$ 

Using this notation and (1.13), we transform (1.12) into 

<I = T-‘(T~ + siieii + yW + yuWu + mini + s,nP + qiXi) (1.14) 

We assume that the quantities Z, si.9 y, Tj, k, &, qi are linear functionals of the values of the variables 
e, eV, w, vii, ~2: S$, xi at a particle of the medium. By virtue of translational invariance these functionals 
must have the form of convolutions with respect to time with some relaxation kernels. For an isotropic 
medium, by local SU(3) invariance we obtain 

(1.15) 

The relaxation kernels KzB = Kia(t) vanish when t < 0 (causality). Moreover, they must also satisfy 
a number of conditions which follow from the general laws of physics. There is a standard method of 
obtaining such conditions [5]. If we use it, we obtain: an analogue ofOn.sager’s relation K&(t) = K&(t) 
(us a consequence of reversibility at the micro level). 

The dissipation condition (which follows from (1.7), (1.14) and (1.15)): if L&(o) are the Fourier 
transforms of Pm(t), then Re L&(o) is a positive definite matrix for 01 = 1, 2,3 and any real o. 

The construction of a model of a viscoelastic medium with a microstructure is thus completed, since 
a complete system of equations and defining relations has been formulated and the general laws of 
mechanics and thermodynamics are satisfied. 

Further details of the model can be given if expressions for the internal energy and the relaxation kernels 
are specified, which must be done based on some additional information about the nature of the medium 
under consideration. The possibility of deriving results from general postulates has been exhausted. 

We note that general defining relations for models of media with a microstructure without a memory 
were studied by Misicu [6]. 

2. We shall study the propagation of small perturbations in a homogeneous medium. To do this we 
need to specify an expression for the internal energy U and linearize Eqs (1.4X1.6). The first expression 
in (1.4) is not essential by virtue of (1.8). We put 6 = T - To. 

We observe that 0; = 6, - ~0, qj = u(i,j). 
For Uwe take an expression that is quadratic in the components of the strain tensor and the angles 

of rotation 
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For an arbitrary funictionf = f(t, xi) we shall denote byfF the Fourier transform 

.&(~,ki) = lexp(-iwJ - iki+)f(t, xi)dt~j 

We linearize the system of equations (1.4H1.6) using (l.lO), (1.15) and (2.1), and we apply a Fourier 
transformation. Witbout loss of generality we can adopt the expression ki = k& for the wave vector. 
We obtain a homogeneous system of seven linear algebraic equations with seven unknowns uiF, (pin, fiF 

P,iOU iF - ikjpuF = A~UjF + BA(P~F = 0 

JiwsZ, + E~‘P~F - ikjxiiF - MiF = A~UjF + B~(PjF + Cf199F = 0 

p&,iti, + ikiqir = Bi3~iF + C319F = 0 

Here we use the following brief notation for the coefficients 

A~ = A”6,i + A’*kikj 

B’. - B”6.. + B’*k k + B13& b- rl i j ik ktj k 

Ai = A2’6u + A”kikj + A23etijikk 

B$ = B*‘$ + B2*kikj, Cf = ikiC2, Bf = ikiB3 

A” = -pow* + f(l,+f~)k*+~(Lf’+f~,)i6.&’ 

A’*=4+;h2+3+ 
( 

~L$+~, +qh ‘0 1 3). 

B” = ,$,i&*, B’* 

Bi” 
=+((J$’ +I$,)io+<), A*’ =i&i&* 

1 3. io, A*‘=~L,,ro+~< 

B2’ =-Jo* +c+(Lf, +G2 +f& +l&)iw+i &ok* 

B22 = ’ 2 ’ ’ 

( 
,h2 +-5b2 iti*, C*=O 

> 

B3 = 0, C3 = p&iw + Ti’G3k2 

By direct computation we obtain an expression for the determinant of (2.2) 

A=55 

Ij = B2’C3(A” +k*A’*)+(A” +k2A’*)(BnC3 +C*B’)k* - 

-(A*’ + k*A**)(B” +k*B’*)C’ 

P2 = (A”B*’ - A*‘B” - k2AzB13)* _ (A23B” + A2’B’3)2k2 

(2.2) 

(2.3) 

The dispersion relation Pr = 0 describes the dynamics of longitudinal translational and rotational 
oscillations as well as heat-conduction effects. The dispersion relation P2 = 0 describes the dynamics 
of the related transverse and rotational modes. To verify these assertions it is convenient to compute 
P’, P2 in the dissipation-free approximation on the basis of (2.3) 
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S =QIQzQP 4 =Qii 

Q, = ~&via Q2 =-02J+< 

Q3 = po(-o2 + v,‘k2), v, = p$+, +x2)& 

The dispersion relations QA = 0 (A = 1, 2, 3) describe, respectivea, the absence of heat transfer, 
rotational oscillations of a non-wave nature with frequency cos = (c/J) , and longitudinal elastic waves 
with velocity Vi. 

The dispersion relation 

Q4=0 (2.4) 

describes the related transverse translation-rotation waves. At small wave numbers Eq. (2.4) has four 
solutions for frequencies with the following asymptotic forms: w = 20, + o(1) (optical modes), and 
o = +V2k + o(k), V2 = (2pJ1’@ (acoustic modes). 

3. We shall now consider the functional form of the relaxation kernels appearing in the relations for 
Cosserats’ viscoelastic medium. 

Let K = K(t) be a typical kernel and let L = L(w) be its Fourier transform. The function L = L(o) 
is the boundary value of a function holomorphic in the complex half-plane Im o d 0 (the Paley-Wiener 
theorem [7]). When continued from the lower to the upper half-plane the function L = L(o) will develop 
singularities. They correspond to internal relaxation processes taking place in the medium under 
consideration. A detailed description of these processes is only possible at a more fundamental level 
of study as compared with that of the model of a continuous medium. In the phenomenological approach 
used in the present paper the internal relaxation processes are characterized by the contributions 
introduced by L = L(w). 

In a large class of cases we have a family of exponentially decaying processes (without oscillations) 
with some spectrum of internal relaxation times. This corresponds to the functional form of the kernel 

K(f) = +r A(X) exp 
0 x 

The kernel (3.1) has the following Fourier transform 

L(a) = +f A(X) dx 
0 l+ip 

(3-I) 

(3.2) 

If we assume that the inequality A(X) > 0 for the weight function is satisfied, then the following 
dissipation condition will be satisfied automatically for L(o) on the real axis (see the end of Section 
1): Re L(o) 2 0. 

There are widely used rheological models in which the weight functionA is a finite sum of &shaped 
distributions, which corresponds to a finite set of internal relaxation processes. In this case the rheological 
relationships can be written in the functional form [8,9] 

where z = z(t) is a certain degree of freedom of the material,f = f(t) is an external force, and Hi, H2 
are polynomials. 

It is of interest to find the form of the weight function A(X) for real media. To do this one can use 
experiments concerning the viscoelastic behaviour of materials subject to a constant force. If the 
behaviour of the degree of freedom z under the action of an instantaneously applied forcefa is considered, 
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then for a linear vixoelastic material 

z(t) =fo<ro + r(r)). r(O) = 0 (3.3) 

where r. is a constant characterizing the elastic properties of the material and r = r(t) is a monotone 
increasing function. The rheological relation 

fob(t) = ht+ K*i (3.4) 

holds, where h = the corresponding modulus of elasticity. 
By eliminating z(t) from (3.3) and (3.4), we can express K(t) in terms of r(t). Indeed, we denote the 

Fourier transform of r(t) by R(o). Then from (3.3) and (3.4) we obtain the relation 

l=(h+iCiL) (ro+iOR) 

It is obvious that hTi3 = 1. Next, from (3.5) we obtain 

L = -hR( r. + id?)-’ 

(3.5) 

(3.6) 

Considering the behaviour of (3.2) near the imaginary axis and using the Sokhotskii-Plemelj formula, 
we derive the expression 

L(iy+e)-L(iy-&)=-2mj-‘A(y-I), y>O (3.7) 

for the jump. Applying this formula to the right-hand side of (3.6), we can determine the weight function 
A(X) and then, in principle, the kernel K(t). 

Geological-geodesic experimental data [lo] are known to be well described by the following functions 

r(r)= a(rl&-J)“, O<acl; r(t)=aln(l+t/XO) (3.8) 

We shall study two cases in succession. We determine the Fourier transform of the first function in (3.8) using 
formula No. 3.381.4 in [ll] 

R(w)=&(io)-(‘+a), & =aX;aT(l+a) 

and assuming that the cut passes along the positive imaginary half-axis. Now, using (3.6) and (3.7), we find the 
weight function 

Thus, the internal relaxation processes are continuously distributed. The contribution of the relaxation processes 
with x + 0, x + += tends to zero as xa and x”, respectively. 

We now find the second function in (3.8). Applying formula No. 4.331.2 in [ll], we obtain 

R(a) = -aexp(-iqo)(io)-’ Ei(-iqo) 

Here Ei(z) is the integral exponential function. Using (3.6) and (3.7) again, we find 

A(~)=aexp(-x0 lx)(a21c2 +(rOexp(-x0 lx)-aReEi(xo /x))~)-’ 

It is clear that a continuous spectrum of internal relaxation processes is also realized in the model corresponding 
to the second function in (3.8), the processes with long and short times being suppressed. 

The above examples show that in the description of real media it is preferable to use relaxation kernels having 
a continuous spectrum of internal relaxation times. 

This research was supported by the International Science Foundation (NF’lOOO and NP1300). 
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